How a bacteria-eating virus discovered in my loo might save your life

https://asm.org/asm/media/article-images/2022/august/phage_feature.jpg?ext=.jpg

Exploring the potential of bacteriophages: How viruses could help fight antibiotic resistance

In a world where the menace of bacteria resistant to antibiotics is significant, more scientists are exploring an unexpected partner in the battle against superbugs—viruses. However, not the type that cause human diseases. These are bacteriophages, also known as “phages,” which are viruses that exclusively invade and eradicate bacteria. Previously overlooked due to the triumph of antibiotics, phage therapy is currently being reconsidered as a potential substitute as the medical field faces the challenge of drug resistance.

The notion of employing viruses to combat bacterial infections might appear unusual, yet it is based on scientific principles established more than 100 years ago. Phages were initially identified by British bacteriologist Frederick Twort and French-Canadian microbiologist Félix d’Hérelle in the early 1900s. Although the concept gained traction in certain areas of Eastern Europe and the ex-Soviet Union, the introduction of antibiotics in the 1940s caused phage research to decline in prominence within Western medical practices.

Now, with antibiotic resistance escalating into a global health emergency, interest in phages is resurging. Each year, more than a million people worldwide die from infections that no longer respond to standard treatments. If the trend continues, that figure could reach 10 million annually by 2050, threatening to upend many aspects of modern healthcare—from routine surgeries to cancer therapies.

Phages offer a unique solution. Unlike broad-spectrum antibiotics, which indiscriminately wipe out both harmful and beneficial bacteria, phages are highly selective. They target specific bacterial strains, leaving surrounding microbes untouched. This precision not only reduces collateral damage to the body’s microbiome but also helps preserve the effectiveness of treatments over time.

One of the most exciting aspects of phage therapy is its adaptability. Phages reproduce inside the bacteria they infect, multiplying as they destroy their hosts. This means they can continue to work and evolve as they spread through an infection. They can be administered in various forms—applied directly to wounds, inhaled to treat respiratory infections, or even used to target urinary tract infections.

Research laboratories worldwide are investigating the healing possibilities of phages, and a few are welcoming public involvement. Researchers at the University of Southampton participating in the Phage Collection Project aim to discover new strains by gathering samples from common surroundings. Their goal is to locate naturally existing phages that can fight against tough bacterial infections.

The process of discovering effective phages is both surprisingly straightforward and scientifically rigorous. Volunteers collect samples from places like ponds, compost bins, and even unflushed toilets—anywhere bacteria thrive. These samples are filtered, prepared, and then exposed to bacterial cultures from real patients. If a phage in the sample kills the bacteria, it’s a potential candidate for future therapy.

What makes this method highly promising is its precision. For instance, a bacteriophage discovered in a domestic setting might effectively target a bacterial strain that is resistant to numerous antibiotics. Researchers study these interactions utilizing sophisticated methods like electron microscopy, allowing them to observe the bacteriophages and comprehend their structure.

Under a microscope, phages appear nearly extraterrestrial. Their form is similar to that of a spacecraft: a head packed with genetic content, thin legs for clinging, and a tail designed to inject their DNA into a bacterial cell. Once within, the phage overtakes the bacterium’s operations to reproduce, eventually leading to the destruction of the host.

However, the path from identifying to treating is intricate. Every phage has to be paired with a distinct bacterial strain, a process that requires time and experimentation. In contrast to antibiotics, which are produced on a large scale and have wide-ranging applications, phage therapy is usually customized for each patient, complicating the regulatory and approval processes.

Despite these challenges, regulatory bodies are beginning to support the development of phage-based treatments. In the UK, phage therapy is now permitted on compassionate grounds for patients who have exhausted conventional options. The Medicines and Healthcare products Regulatory Agency has also released formal guidelines for phage development, signaling a shift toward greater acceptance.

Specialists in the area underline the necessity of ongoing investment in bacteriophage research. Dr. Franklin Nobrega and Prof. Paul Elkington from the University of Southampton point out that phage therapy might offer crucial assistance against the growing issue of antibiotic resistance. They mention instances where patients have been without effective therapies, stressing the critical need for developing feasible options.

Clinical trials are still needed to fully validate phage therapy’s safety and efficacy, but there is growing optimism. Early results are encouraging, with some experimental treatments showing success in clearing infections that had previously defied all conventional antibiotics.

Beyond its potential medical applications, phage therapy also offers a new model of public engagement in science. Projects like the Phage Collection Project invite people to contribute to research by collecting environmental samples, providing a sense of involvement in tackling one of the most pressing challenges of our time.

This local effort may be crucial in discovering novel phages that could be vital for upcoming therapies. As the globe deals with the escalating challenge of antibiotic resistance, these tiny viruses might turn out to be unexpected saviors—evolving from little-known biological phenomena into critical instruments of contemporary medicine.

Looking ahead, the hope is that phage therapy could become a routine part of the medical toolkit. Infections that today pose a serious risk might one day be treated with precision-matched phages, administered quickly and safely, without the unintended consequences associated with traditional antibiotics.

The path forward will require coordinated efforts across research, regulation, and public health. But with the tools of molecular biology and the enthusiasm of the scientific community, the potential for phage therapy to revolutionize infection treatment is real. What was once an overlooked scientific idea may soon be at the forefront of the battle against drug-resistant disease.

By Johnny Speed

You May Also Like